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General goal of the BETACOOL program is to simulate long term processes (in comparison with
the ion revolution period) leading to variation of the ion distribution function in 6 dimensional
phase space. The ion beam motion inside a storage ring is assumed to be stable and it is treated in
linear approximation.

BETACOOL code was developed in collaboration with many scientific centers:

BNL, Upton, USA
Fermilab, Batavia, USA
Tech-X, Boulder, USA
RIKEN, Wako, Japan
NIRS, Chiba, Japan

Kyoto Univ., Japan
CERN, Geneva, Switzerland
GSI, Darmstadt, Germany
FZJ, Juelich, Germany
Erlangen Univ., Germany
Munich Univ., Germany
ITEP, Moscow, Russia
BINP, Novosibirsk, Russia
Uppsala Univ., Sweden
Stockholm Univ., Sweden

In general, ion beam dynamics within BETACOOL can be simulated taking into account various
effects, such as Electron Cooling, Intrabeam Scattering, Rest Gas Scattering, Stochastic Cooling,
Colliding Beams effects, Recombination, Target Scattering and others. Depending on the task, one
can use an arbitrary combination of these effects in simulations.

The Physics guide described in this report summarizes only two major effects of Electron Cooling
and Intrabeam Scattering which are typically used in simulations of electron cooling. The
description is given as three parts with independent references to sections and equations within each
of the parts. This guide includes the following parts:

Part 1. Numerical algorithms. ... ... e e e e e e 2
Part 1. EIECtron COONING. ..ot e e e e e e e e 10
Part 1. Intrabeam SCattering..........covviiiiie e e e e e e e e ene a0 A
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Part I. Numerical algorithms

Introduction

Initially, BETACOOL [1] code was developed as a program for simulation of particle dynamics in
ion storage rings under the action of electron cooling force. Further development led to addition of
other effects and numerical algorithms for tracking.

First algorithm of numerical tracking is RMS Dynamics which calculates evolution in time of the
r.m.s. (root mean square) parameters of the ion beam distribution function and particle number.
RMS Dynamics algorithm is based on solution of equation for the second order moments of the
distribution function. Characteristic times of the evolution of the beam parameters for a few general
effects are calculated under assumption of Gaussian shape of the distribution function.

Second algorithm of tracking is Model Beam approach. It was developed on the basis of
SIMCOOL code which was originally written by BINP group at Novosibirsk. This algorithm uses a
few thousands of test particles with an arbitrary distribution. The action from IBS on each of the test
particles is calculated from the instantaneous distribution of the test particles. This algorithm has a
good accuracy when the distribution of test particles is close to Gaussian. Some modification of this
method was made for simulation of IBS in the case of non Gaussian distribution.

Evolution of the ion distribution function is described by the Fokker-Plank equation. In general
case, the friction and diffusion terms depend on the distribution function. However, in some cases
when the effects acting on the distribution function do not lead to change of its shape, the Fokker-
Plank equation can be reduced to equation for the second order moments of the distribution
function.

In a general case, the Fokker-Plank equation can be reduced to the Langevin equation in invariant
or momentum space. The Model Beam algorithm realizes solution of the Langevin equation in
momentum space using Monte Carlo method. In the framework of this algorithm the ion beam is
presented as a particle array. Each particle is presented as a 6 co-ordinate vector:

S : A . . .
X =[x, P ,y,p},s—so,p} where x and y are the horizontal and vertical co-ordinates, p. and p,
p p p

are corresponding momentum components, s-so is the distance from the bunch center (in the case of
coasting beam — distance from a reference particle), Ap is the particle momentum deviation from
momentum of reference particle p. Action of each of the effects is simulated as variation of the
particle momentum according to:

(poy 1 p),, =Dy I p), + A, AT+ D, ATE, . (1.1)

where p, is the particle longitudinal momentum deviation, subscript in corresponds to initial
momentum value, subscript fin corresponds to final particle momentum after action of the effect, A
and D are the drift and diffusion terms for the corresponding degree of freedom, AT is a step of the
integration over time, & is a random number for Gaussian distribution with unit dispersion.

The third algorithm, which is called MD Tracking, uses real particles with arbitrary distribution.
This special method, named Molecular Dynamics (MD) [2], is used for simulation of Intrabeam
Scattering (IBS) in the ion beam. This algorithm assumes that particles have periodical distribution
in the longitudinal direction. Usual number of particles per cell is about 10-100. It can simulate the
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crystalline state of ion beam for very low temperature in the beam rest frame. MD simulation can be
used for testing of analytical formulas for IBS effect also. However, it presently works only for
unbunched ion beam. Therefore, we do not describe this algorithm in this report.

Three different tracking algorithms described above allow to benchmark them against each other
and to test the validity of action due to different physical effects. If initially the Gaussian
distribution is chosen then the evolution of r.m.s. parameters should be the same while the shape of
the distribution doesn't change.

1. RMS Dynamics algorithm

1.1. Physical model

The physical model which can be investigated with this algorithm is based on the following general
assumptions:

1) ion beam has Gaussian distribution over all degrees of freedom, and is not changed during the
process.

2) algorithm for analysis of the problem is considered as a solution of the equations for r.m.s. values
of the beam phase space volumes of three degrees of freedom.

3) maxima of all the distribution functions coincide with equilibrium orbit.

The evolution of the ion beam parameters during its motion inside the storage ring is described by
the following system of four differential equations:

€ hor 1
— =g _
dt hor? Chor
€er 1
=& -,
dt Ve”%: Tyer
fm_p 5 1 &2
dt o J Tlon ,
dN 1
A NZ_,

where N is the number of particles. For the transverse degrees of freedom parameters &, and €.,
correspond to the horizontal and vertical emittances, for the longitudinal degree of freedom it is
given by the following expression:

2
A
[—pJ , coasting beam;,
p

Elon = A 2 1 d (A 2 ’
(_pJ +— _(_p] , bunched beam.
p QS dt p

In Eq. (1.3) the upper line corresponds to a coasting beam, lower line to a bunched beam with
constant parameters (for variable synchrotron frequency it is necessary to use adiabatic invariant
instead of energy; presently a depression of the synchrotron tune due to the action of the beam

(1.3)

Part I. Numerical algorithms 3



BETACOOL Physics guide, Version 1.1 http://lepta.jinr.ru/betacool.htm Last update: 20 Nov 2006

space charge is not taken into account during dynamics simulation). Qs — is the synchrotron
frequency. Therefore, the second expression in Eq. (1.3) corresponds to the square of momentum
oscillation amplitude.

Characteristic times (To- T vern T 10n) are functions of all three emittances and particle number, and
have positive sign for a heating process and negative for cooling. The negative sign of the lifetime
(tire) corresponds to the particle loss. The sign of the lifetime can be positive in the presence of
particle injection, when particle number increases.

Index j in Eq. (1.2) is the number of processes (effects) involved in the calculations. The program
structure is designed in a way which allows to include any effect into calculation, if the effect can
be described by cooling or heating rates.

During numerical solution of the system (1.2) the parameters, which characterize beam stability are
also calculated. They are the incoherent betatron tune shift value, the depression of the synchrotron
tune, dimensionless parameters describing the beam in the framework of the longitudinal and
transverse coherent instabilities.

[ Start ]4—
Load input file P
Initialization of objects BOLIDE
interface Effect
> library
i — IBS
Output of emittance
evolution
v — ECOOL
Integration step over | Sum of the rates
time with Eq.(1.1) of active effects —
! .| Collisions
Calculation of luminosity,
stability and so on e

e

)

Fig. 1.1 Block-scheme of the r.m.s. beam parameter evolution simulation

Numerical solution of the system (1.2) is performed using Euler method with automatic step
variation. In principle, the system can be solved using arbitrary method - for example, one of the
Runge-Kutta methods. Choice of the procedure for integration is determined by optimization of the
calculation speed. Algorithm of numerical integration of the system of equations (1.2) is realized in
the program as illustrated in the Fig. 1.1.
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Further development of the code is related to the modifications of this basic model. Such
improvement is necessary due to several disadvantages of the model. For example, an assumption
of Gaussian shape of the ion distribution function. This assumption is more or less realistic in an
equilibrium state of the ion beam when the equilibrium is determined by many processes of
stochastic nature. If the equilibrium does not exist due to a fast loss of particles or during initial
stage of the beam cooling, the ion distribution function can be far from Gaussian. The same
situation takes place in an experiment with internal targets which dimensions are not coinciding
with the ion beam dimensions. The ionization energy losses of the ion beam in the target can not be
correctly calculated in the framework of existing model also.

Investigation of the ion beam dynamics for an arbitrary shape of the distribution function can be
performed using multi particle simulation. The structure of basic objects of the code, such as the
models of the ion ring and the ion beam, are developed in a way which allows to realize the multi
particle simulation using Monte Carlo method without any change of the program structure.

2. Model Beam algorithm

The Model Beam algorithm was borrowed from the SIMCOOL code. Implementation of this
algorithm was very useful for the benchmarking of several numerical models between the codes.
This algorithm was further developed within the BETACOOL code.

2.1. Physical model

Investigation of ion beam dynamics for an arbitrary distribution function is performed using multi
particle simulation in the framework of Model Beam algorithm. In this algorithm the ion beam is
represented by an array of modeled particles. The heating and cooling processes involved in
simulations result in a change of the particle momentum components and number of particles,
which are calculated in accordance with the time step of dynamic simulation.

Each effect is located in some position of the ring characterized by the ring lattice functions.
Transformation of the beam inside the ring is provided using linear matrix with random phase
advance between the locations of the effects.

The numerical realization of the algorithm described by the formula (1.1) has the following
peculiarity. The regular variation of the particle momentum due to action of drift term can be
rewritten as

A
(px,y,s / p),,,, = (px,y,s / p)m @+ ; AT). (2.1)
. px,y,s p in

X8

A
For large value of AT the absolute value of the term (—TAT can be larger than unity (in the
px,y,s p in

case of cooling this term has a negative sign). In this case direct application of the formula (2.1) will
lead to change in sign of corresponding momentum component and can lead also to increase of its
absolute value. This situation corresponds to artificial diffusion heating of the beam due to

A
AT

numerical algorithm. To avoid this “numerical” diffusion for |
px,y,s p in

>1 the formula (2.1)

is transformed to the following form
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A,

(P! p) m=(px,y,s/p)mxe><p{ e AT}, (2.2)
4 /
‘ px,y,s pin

which includes the (2.1) as a limiting case for small AT.
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Fig. 2.1. Block scheme of the Model Beam algorithm.
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The Model Beam algorithm can be illustrated by the scheme presented in the Fig. 2.1, includes the

following steps:

- initially the storage ring optic structure is loaded from external file (MAD output file, for
example), mean ring parameters and RF system parameters are loaded from input BETACOOL file,
- in the initial position of the ring an array of particles is generated using random number generator
and matched with the ring lattice functions and synchrotron function,

- on each cycle over the effects, the transformation matrix between two effects is calculated from its
lattice functions, phase advance is generated randomly,

- each particle is rotated according to the transformation matrix,

- kick procedure from the current effect is applied to each particle.

2.2. The beam rotation with the matrix

To avoid the problems related to the beam mismatching and coupling between longitudinal and
transverse coordinates the beam rotation in the ring is provided in the following steps.

The betatron coordinates are transformed according to the coefficients of the ring matrix in the
point of the array generation:

X (R Ry | x y (Raz Ry |y
/ = T N = I (2.3)
X Jina Ry Ry \x i\ Jia Rz Ry \y ;

where notation of the matrix coefficients is explained in the following table:

Rll R12 R13 R14 R15 R16

M pive = : (2.4)

The beam rotation in the longitudinal plane is provided with the usual rotation matrix:

s—5, (iOSu B sinp\s—s,
ap | ——sinp cosp A (2.5)
P i+l BS P i

where p value can be arbitrary non-zero, B, - synchrotron function.

After the beam rotation in the longitudinal plane new values of the particles transverse co-ordinates
are calculated from the betatron ones and new value of the longitudinal momentum deviation.
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2.3. Kick procedure for IBS

In the case of IBS calculation based on mean growth rates, the mean growth rates are calculated in
accordance with one of the analytical models implemented in BETACOOL and the ring structure
loaded from output MAD file. When the growth rates are known one can calculate mean square of
the scattering angle taking into account multiplication factor. The mean square angle after one
revolution in the ring is equal:

() =§TT (2.6)

where B is the beta function in the point of the particle array generation, t is characteristic growth
time for the corresponding degree of freedom. Here, the angular deviation of the particle trajectory

. A . . .
means relative momentum components: 6, , = Pry 0, =2 After N, revolutions in the ring

p p
the square of the scattering angle is equal to the sum of the square angles of each revolution:

(02) =§TTN 27)

The variation of the particle trajectory angular deviation is calculated according to
AB = <92> & (2.8)

where £is the random value with Gaussian distribution of unit dispersion.

2.4. Kick procedure for Electron Cooling (ECOOL)

In the framework of Model Beam algorithm the action of the electron cooling on the ion
momentum components is calculated in accordance with the cooler representation as a thin lens. In
this case the ion angle variation is calculated as

F

A= —F—
MCZBZY

lcool N (2 . 9)

turn !

where F'is the friction force in laboratory rest frame (LRF), A is the ion mass, /., is the cooling
section length, N, is the number of revolutions used as a multiplication factor. The ion co-
ordinates change is neglected inside the cooler. The friction force components can be calculated
using any of the friction force formulae and any of the models of electron beam implemented in the
BETACOOL.

2.5. Kick procedure for effect of Additional Heating

An effect of Additional Heating can be applied for different kind of kicks. An angle variation in
the case of constant and linear heating (or cooling) is calculated with formula:

Part I. Numerical algorithms 8



BETACOOL Physics guide, Version 1.1 http://lepta.jinr.ru/betacool.htm Last update: 20 Nov 2006

T T
2 e turn ! 2 L N turn > _l
& T g T
AB, =0, x )7 .7 , (2.10)
exp( e Ntum J - 1’ — Ntum S _1
g T g, T

where 0; — angles, i =0+2 — index of degree of freedoms: i = 0 — horizontal, i = 1 — vertical, i =2 —
longitudinal, 7., — revolution period, t; — heating growth rates, N, — number of turns, » = 1 for
any case and » = 2 for longitudinal direction in the case of a bunched beam. In the case of constant
rates ; = 1. In the case of linear rates gy corresponds to horizontal emittance, &; corresponds to
vertical emittance, e, corresponds to momentum spread in accordance with Eq.(1.3).

The diffusion heating applies random kicks to momentums of ions. In the case of diffusion heating
with constant power the kick doesn't depend on the current values of emittances. In other case the
diffusion heating kick depends on current emittances:

4 T

_ rev a

AHhor - \/ ’ turn ghor ' CJE
ﬂ X z-hur

T
Aever = i - Nturn ’ g\fer ’ é (211)
ﬂy Tver

T
AHlon :\/Zb.releum '811;1 é:

lon

where B,, B, are horizontal and vertical beta functions, a = 1 for diffusion heating with constant

power and a = -1 for diffusion heating which depends on current emittances, & is the random value
with Gaussian distribution of unit dispersion.
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Part Il. Electron cooling

1. Introduction

To solve the problems related with the cooling process a hierarchy of objects was developed in the
framework of the BETACOOL program. Structure of the electron cooling [1] effect permits to
extract procedures at different levels and to include them into calculation of the cooling process in
other programs. The cooling simulation is based on a friction force calculation in the particle rest
frame. The next layer of the simulation is related to cooler representation as a map, transforming
particle coordinates from the entrance to the exit of the cooling section. The map of the cooler can
be used directly in the framework of the Molecular Dynamics algorithm, or in other tracking
procedures. On the basis of the map one can calculate kick of the ion momentum after crossing the
cooling section which is necessary for simulation of the ion distribution evolution within the Model
Beam algorithm. The map of the cooler is also used for the calculation of the cooling rate which is
necessary for RMS dynamics simulation.

In this chapter we describe structure of the electron cooler representation. Briefly we discuss the
theory of the friction force calculation based on the binary collision model and describe analytical
models for the friction force calculation used in BETACOOL. Calculation of the cooler map is
based on a model of electron beam that provides transformation of the ion velocity to the frame
related with the electron beam and takes into account real geometry of the cooler. There are several
models of electron beam which are presently available for simulations. Algorithm for calculation of
the ion momentum Kick after crossing of the cooler is described in Section 5. The cooling rate
calculation can be performed using two models of the ion beam — the cooling rates for “rms
particle”, or cooling rates for the ion beam with Gaussian distribution in all degrees of freedom (see
Section 6).

2. Structure of the algorithm

The uniform way of the friction force calculation is an application of the corresponding formulae
given in particle reference frame (PRF), which moves with average particle velocity V. For analytic
expressions of the friction force the transformation of the ion velocity into PRF and the force
components back to the laboratory reference frame (LRF) can be provided also analytically, so that
one can use in the formulae written in LRF as well. However, direct numerical calculation of the
friction force is usually provided in PRF. To have a possibility to use the same algorithm for
analytic expressions and for results of numerical simulations, the transformation between the
reference frames was realized as a part of the cooling calculation algorithm.

In this case, the calculation procedure requires transformation of certain parameters from LRF to
PRF and, after the calculation of the friction force components in PRF, their transformation back to
LRF. The ion velocity components V. in PRF are equal to

Vx,zzﬂ/ﬁcex,z; V_S‘:ﬂces: (21)
To transform the friction force components from PRF to LRF the following expressions are used
1
Fx,z = (Fx,z)LRF = ;(Fx,z)PRF 1FSE(FS‘ LRF — (Fs PRF - (22)
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P
Here x, z are the horizontal and vertical co-ordinates, &, . = P 0 :A;, P=pyMc is the

N

longitudinal component of the reference particle momentum, P, . are the transverse components of
the ion momentum, AP is the longitudinal momentum deviation, s - so is the ion longitudinal

distance from the bunch center (the reference particle), B = Vy/c, ¥y =+/1— 8>, c is the speed of
light, o — velocity of the reference particle.

In PRF the friction force is a function of two components of the ion velocity: across and along the
magnetic field line (or electron beam axis in the non-magnetized case) and the force has also only
two components — transverse and longitudinal. The transverse component of the ion velocity is
calculated as:

v, = 1/Vx2 +V72. (2.3)

The friction force for x and z components is calculated from the transverse component in
accordance with:

(2.4)

X 1 z 1
vi,i vi,L

Such a model presumes that gradient of the electron beam density is negligible inside a region of
effective interaction between ion and electrons.

In the present version of the program the friction force components in PRF can be calculated using
one of the analytic formulae from the friction force library:

- Budker’s,

- non magnetized,

- by Derbenev — Skrinsky — Meshkov,

- by Parkhomchuk,

- by Toepffer,

described in the next chapter. The friction force can be also represented by a numerical Table and
read into the code from the file containing results of numerical calculations. Such force
representation is called “Tabulated”. In addition, the method “Electron array” allows one to
calculate component of the force for an arbitrary electron distribution. The library is realized as a
set of independent procedures. Each of them obtains at the entrance two components of the ion
velocity and returns two components of the friction force. Each procedure uses for calculations the
same list of input parameters. This list includes the following parameters of the ion and electron
beam:

- the ion atomic and charge numbers,

- the magnetic field value,

- local electron transverse and longitudinal velocity spreads,
- local effective electron velocity spread,

- local electron density,

- the ion time of flight the cooling section,

- electron beam radius.

Each procedure of the friction force calculation does not require a total list of these parameters, but,
for universal usage of the friction force, all the parameters should be determined before the friction
force calculation. Transformation of the ion velocity from LRF to PRF, transformation of the
friction force components from PRF to LRF, and calculation of the list of parameters for friction
force calculation are provided by a model of the electron beam.
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A variety of models of the electron beam is available:

- cylinder of round cross-section with uniform density distribution,

- cylinder of elliptical cross-section and Gaussian density distribution of electrons in the transverse
planes,

- ellipsoidal bunch with Gaussian density distribution in all co-ordinates.

- hollow transverse distribution of electron beam

- array of particles read from external file

First model of the electron beam corresponds to traditional electron cooling system and this model
takes into account space charge effects in the electron beam. Second and third models are oriented
to simulation of the electron cooling in GeV ion energy range. The elliptical cylinder can be used
for modeling of coasting electron beam circulating in small ring. The Gaussian bunch corresponds
to RF accelerated electron beam. Each model of the electron beam calculates the local parameters of
the electron beam in the frame referenced to the electron beam orbit.

To take into account displacement and misalignment of the electron beam and influence of the
magnetic field line curvature one needs to provide transformation of the ion co-ordinates and
velocity components from the frame referenced to the ion beam equilibrium orbit to the frame
referenced to the electron beam orbit and back. In the case of bunched ion and electron beams one
needs to transform the ion longitudinal co-ordinate measured relatively to the center of the ion
bunch to the distance from the center of the electron bunch. The model of the electron beam
provides all these transformations also.

All the models of the electron beam are used in the same way: the model obtains at the entrance the
ion coordinates in the form of vector:

X ={x, 6, z, 6., s-s9, 0.}, (2.5)

in the laboratory frame referenced to the ion beam equilibrium orbit and returns three components
of the friction force in the same frame.

The electron cooler representation in the form of a map (which is necessary for tracking procedures)
is based on the electron beam model. The right hand sides of the motion equation are calculated by
an addition (to the force components) of the terms describing drift motion of the ion in the cooling
section. Influence of the magnetic field and space charge fields of the electron beam as well as the
ion motion distortion at the entrance of the cooling section can be taken into account also. The
solution of the ion motion equation is provided by one of the numerical methods developed in the
program. The ion motion equation can be solved in the thin lens approximation or by solution of the
motion equation using Euler or 4th order Runge-Kutta method.

The map of the cooler obtains at the entrance the initial ion co-ordinates and returns the ion co-
ordinates at the exit of the cooler and probability of the ion loss due to recombination with the
electrons. The particle loss probability is calculated under assumption that the ion velocity is less
than the one of electrons.

The map of the cooler is used as a basis for electron cooling representation as an effect acting on the
ion distribution function. Electron cooling, as an effect, includes two standard procedures. One of
them provides kick of the momentum components for all ions in the model beam and calculates the
particle losses due to recombination in the cooling section. Other procedure calculates characteristic
times of the ion beam rms emittance variation and the beam lifetime. The characteristic times can
be calculated using two model of the ion beam: single particle cooling times and cooling times for
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Gaussian beam obtained using Monte-Carlo method. Electron cooling, as an effect, obtains at the
entrance the ion beam in one of the form using in the program and returns the ion beam in the same
form with parameters changed by action of the electron cooling.

The described structure of the electron cooling object permits to use uniformly all the models
developed at the same layer of the hierarchy. Each model at some level can use all the models at the
lower layers in arbitrary combination. Each layer of the hierarchy can be extracted from the
BETACOOL and used as an independent object in another program.

3. Friction force in the particle rest frame

3.1. Non-magnetized electron beam
3.1.1. Binary collision model

The friction force acting on ion is determined by Coulomb collisions with electrons (Fig. 3.1). The
electron with velocity v, in the PRF colliding with the ion which has velocity J at impact parameter

p obtains the transverse momentum Ap, relatively to the vectorU =V -, :

27e°
pL=Ap, =

_‘VT' (3.1)

P

Ze, e are the charges of the ion and electron. Due to conservation of the total particle momentum p,,
= const the appearance of the transverse momentum p, of electron leads to the following change of

its longitudinal momentum:

A 2
Apy=p, P~ ) (3.2)

The electron energy changes by the value:
AE, =P (3.3)
2m

which is equal to the change of the ion energy AE;. Here m is the electron mass.

P
U ~
H 0 P
N
P v \‘o

Fig. 3.1. Two-body problem
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Integration over impact parameter p gives us the ion energy loss per unit of the length:

dE Pmax
—L =2z IneAEipdp, (3.4)

ds
Pmin

Here n. is the electron density, oua, Pmin — Minimum and maximum impact parameters of the
collision. The minimal impact parameter pmin approximately corresponds to electron scattering by
the angle of /2. The maximum impact parameter corresponds to the distance between particles
when the effective interaction is possible. The friction force in the extremely cold electron beam is
equal to:

dE . 477 °%n e*
F - _ I — . nzee In pmax . (35)
dS mV pmin

3.1.2. Numerical integration

When the electrons are distributed over velocities in accordance with the function f{v.) the friction
force can be evaluated by numerical integration of the following formula [2-5]:

_ Ame'Z? V-9
| |n[”m“j — e f,)dP,. (3.6)
m min V—\j@
The Coulomb logarithm In Pmax g kept under the integral because the minimal impact parameter

min

depends on electron velocity:

Ze? 1
Pmin :7 2" (37)

‘V—ve

In the case of uniform velocity distribution of electrons, the electron beam can be described by the
temperature 7, and r.m.s. electron velocity spread A, over each of the three dimensions, that are

connected with each other in accordance with
T, =mA’ (3.8).

For a given value of the ion velocity the maximum impact parameter is constant and it is
determined by dynamic shielding radius or the ion time of flight through the electron cloud. Radius
of the dynamic shielding sphere coincides with Debay radius:

Pp=—", (3.9)
a)p
when the ion velocity is less than the electron r.m.s velocity spread A.. The plasma frequency , is

equal to
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2
o = |3 (3.10)

r m

When the ion velocity is sufficiently larger than the electron velocity spread it determines the
shielding radius

%
psh = (311)

@,

Both of the formulas (3.9) and (3.11) can be combined together to have a smooth dependence of the
shielding radius on the ion velocity:

P+ A
Py = (3.12)
w

p

In the case, when the shielding sphere does not contain sufficient number of electrons to
compensate the ion charge (such a situation may take place in the case of magnetized electron beam
with low longitudinal velocity spread) it has to be increased in accordance with the electron beam
density and the ion charge. In the program this radius is estimated from the expression

n,p®~3Z. (3.13)

As a result, the maximum impact parameter is calculated as a minimum from three values:

Prax = min{max[psh, 3/3—ZJ Vr}. (3.14)
ne

The second term describes the distance, which the ion passes inside the electron beam. Here 7 is the
ion time of flight the cooling section in the PRF:

e (3.15)

Bre

In the case of axial symmetry the electron distribution function can be written in the following

form:
1) 1 v
= = exp| — -——, 3.16
) (znj A A p( 2N, 2Af| (3.16)

LI

where A, and Aj are the electron rms velocity spreads in the transverse and longitudinal direction
correspondingly.

Asymmetry of the electron distribution function can appear, for instance, due to electrostatic

acceleration of the electron beam. In this case the temperatures of transverse and longitudinal
degrees of freedom are different (see details in [4]):
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T2
_~ cathode,eff 2 1/3
T_L zTcathode + Toptics; 7}| =8 +€ ne y (317)
LPyimc’

where Teamode 1S the cathode temperature, 7,,.s describes an additional transverse velocity spread
due to distortions during electron beam transportation to the cooling section (this temperature
includes also the incoherent drift motion in the crossed fields (see chapter 4.2.)). The effective
cathode temperature used for longitudinal temperature calculation includes a term determined by
amplitude of the accelerating voltage ripple.

In the general case, for example for RF electron beam acceleration, the temperatures of the
transverse and longitudinal degrees of freedom can be calculated from electron beam parameters as
follows:

TL :mCZﬂZyZHZ,

T, :mczﬂ{AjJ , (3.18)

where @ is r.m.s. angular spread and Ap/p — r.m.s. momentum spread of electrons in the cooling
section. The angular spread can be a function of radial co-ordinates due to the drift motion of
electrons or oscillations of the beam envelope. The relation between temperatures and
corresponding rms velocity spread in particle rest frame (PRF) is determined similarly to formula
(3.8):

T =mA°. (3.19)

The shielding cloud in the case of non uniform distribution has an ellipsoidal shape which can be
approximated by the sphere of radius calculated using effective electron velocity spread:

A =N+ A (3.20)

The components of the friction force (3.1) can be calculated in cylindrical co-ordinate system as
follows:

2

2
(v, —v, cos ¢)exp(_ R Vn]

2A%  2A°

2 Z%'n, w 027 P j L [
F _ I max
. \/7mA2 A, ! '[ol- n[/’mm ((Vn —v f+(r, —v, cosp) +v?sin® (p)

v dpdvdy, ,

3/2
2

e M'”(pmaxj(( V p( - 22_]

Prmin V”—v”) +(Vl—vl COS([)) +VJ_S|n2¢)3/2

v dpdvdv, . (3.21)

In numerical calculations, within an accuracy of about 2% the upper limit of the integrals over
velocity components can be replaced from infinity to three corresponding rms values and
integration over ¢ can be performed from 0 to = due to symmetry of the formulae. In this case the
friction force components can be calculated as:
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2

2
v v,
(v, —v, cos go)exp(— ﬁ - 212 ]
1 I

v dodvdy,

4 —v”)2 +(V, —v, cosg)’ +v? sin? (0)3/2

(4 —vn)exr{— u V”ZJ

2N’ 24

_ 471'2264”6 o Prmax j
R L el

v, dpdvidv,,  (3.22)

II
m-Int g 38,0\ Pmin J |V,

4nz%e*n, ¥ 20 % (p j
F =— e |n max
I J J. (( ”—v”)2+(VL—VLCOS¢)2+viSin2§D)3/2

where the normalization factor is calculated in accordance with:

34, 34y £ V2 w:
Int = expl - —= ——— v dedvdv, . 3.23
[ i3 sppom -

The minimal impact parameter is the following function of the electron velocity components:

Ze’ 1
Prmin = - . (324)
m, (VII (] P+, —v, cosp) +visin?e
At the ion velocity V' >> A, A the minimal impact parameter becomes to be constant:
_ Ze 1 .25
pmln . Vf i V”2 ’ .

and Coulomb logarithm can be removed from the integral. At extremely small ion velocity the
calculation of the minimal impact parameter in accordance with the formula (3.25) leads to zero
friction force value, when p... > p,.... One can avoid this problem introducing mean minimal

impact parameter in accordance with
Ze? 1
m, VZ+VZ+ N + A

pmin = (326)

When the Coulomb logarithm L is constant the two of three integrals in (3.21) can be calculated
analytically, and the friction force components can be written in accordance with Binney’s formulae

[3]:

ne'Z*L. Vv,

F=2/2n "2 2C "L e,
m A
A4
F=2/on %2 e Ty (3.27)
m A

where Int, and Int are the following integrals:

Part Il. Electron cooling 17



BETACOOL Physics guide, Version 1.1 http://lepta.jinr.ru/betacool.htm Last update: 20 Nov 2006

expl — ! _Vn2 1
x 20% 1+q 28 (A /A, f +q

Int, = dq
. 0 @+ q)z((A” /Al)2 +q)1/2
exp[— 1 4 1
x 202 1+q  2A% (AJA, ) +q
Inty = [ - S - dg. (3.28)

0 (l+ q)((A” /AL>2 +q)

In the case of uniform Maxwellian distribution (when A, =A, =A,) the integrals (3.28) coincide

with each other and can be evaluated analytically, which was first done by Chandrasekhar [2]. This
formula is implemented in BETACOOL under notation of Budker’s formula for electron cooling
time. The friction force in this case is given by:

Fo V AmeZLe [V
Ve A,)

e

where ¢(x) = \/zj.e_yzlzdy—\/zxe_"zlz. (3.29)
Ty z

The formulae (3.22) give the same result when the logarithm is taken out of the integrals.

3.1.3. Asymptotic representations for flattened velocity distribution

For fast simulation of the cooling process one can use different asymptotic formulae. For example,
the asymptotic formulas can be derived based on the Coulomb analogy (see Refs. [4]-[5]).

In the case, when transverse velocity spread of electrons is substantially larger than longitudinal one
the friction force can be approximated in three ranges of the ion velocity. In accordance with
Meshkov’s asymptotes [4] the force components are calculated with the following formulae.

I. High velocity V> A,, here longitudinal and transverse components of the friction force are equal:

4nz%e*n,L. V

Fe- v
m y3

(3.30)

and in this range the friction force shape coincides with formula (3.29).

I. Low velocity Ay < V' < A,. Here, the transverse component of the friction force is given by the
following expression:

4nZ%e*n,L. V,

F, = —, 3.31

and longitudinal one:

4nZ%e*n,L. 'V,
.
m ‘VH ‘AL

F=-

| (3.32)
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I11. Superlow velocity V' < A;. Here the transverse component of the friction force is equal to zero,
the longitudinal component is given by:

Azt L. V)

F, = : 3.33
: mo AN (3:33)
The minimal impact parameter in the Coulomb logarithm is equal to:
— Z_ez# (3.34)
" m VA '

where A, is given by the formula (3.20).

The asymptotes by Ya. Derbenev for the longitudinal component of the force have the following
form:

47rZze4n€L(V”) Vyo|2 :
Fh =— B if V<< Ay. (3.35)
m AN N
4nZ’e'n 4 |z 4 :
F=- =| L(V, — =LA )—1|, IfAL >V>>A, 3.36
I m [ ( ”)‘VH‘Ai 5 ( J_)Ai L ll ( )

Here the Coulomb logarithms are calculated in accordance with the following formulae:

L(V)—In[,/fﬂ;"; / } (3.37)
L(Al)zln{ /422”8“2 / mm}. (3.38)

In order to provide uniform usage of the formulae in the program the friction force calculation is
realized in three ranges of the ion velocity similarly to Meshkov’s asymptotes.

I. High velocity V> A,, here longitudinal and transverse components of the friction force are equal:

B 4nZ%e*n,L. V,

Fo=- el (3.39)
4nZ%e*n i 2 1

Fo=_2ete ) L 2p(A )= . 3.40

|| - ( s\, ( L)I/Hz (3.40)

I. Low velocity Ay < V' < A,. Here the transverse component of the friction force is given by the
following expression:
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B 4nZ’e‘n,L. V,

F, = —, 3.41

and longitudinal one:

4nZ%e*n 4 2 "

F =- el L —JEL(a )L .
I C ;2 | A2 A2 L/ A3
m NGRSV R Ay

(3.42)

I11. Superlow velocity ¥ < A;. Here the transverse component of the friction force is equal to zero,
the longitudinal component is given by:

4 ZZ 4 V
F|'|:_ﬂ eneLC 2 ”22'
" VT AAL

These formulae in the case of 7, = 0 give the correct result for the longitudinal component of the
friction force (3.45), (3.46) and have a correct asymptotes at high ion velocity. The transverse
component of the force is calculated in accordance with Meshkov’s representation.

(3.43)

3.2. Magnetized electron beam.

In the magnetized electron beam, when the maximum impact parameter (3.14) is larger than radius
of electron Larmor rotation so called “magnetized collisions” between ion and electron take place.
In this case the electron is attracted by the ion, which pulls it along the magnetic field line [5]. In
different ranges of the ion velocity and impact parameter three type of collisions are possible: fast,
adiabatic and magnetized.

3.2.1. Magnetized collisions

Practical analytic expressions for the friction force in strong magnetic field were worked out by Ya.
Derbenev and A. Skrinsky [5]. For ion collisions with electrons at the impact parameter higher than
the mean radius of electron Larmor rotation

cmA
p, = L (3.44)
eB

the friction force in the particle rest frame can be expressed as follows [5]:

B 2nZ%e*n, 0 (| V?

2
F Tﬁ |:l]3 LM + U:|_/(Ve)dve y (345)

where U =V} +(Vn —ve)2 - the relative velocity of the ion and electron “Larmor circle”. f{v.) is

the electron distribution over longitudinal velocity, in the case of Maxwellian distribution with rms
velocity spread of A it is expressed as

1 v
flv,)= T, exp(— 2ni J (3.46)
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Maximum impact parameter in the Coulomb logarithm for magnetized collisions

L, = |n(pmaxJ (3.47)
P1

is calculated as usual (3.14).

The formula (3.45) has asymptotes in the region of small and large ion velocities. When V >> A
the electron distribution can be approximated by delta-function f(v,)=3(v,), and integration in

(3.45) gives:

2nZ%e*n, ( 3V}

b=N— 7 ( V% L, +2j, (3.48)
2nZe*n L, V' -2V}

Fo=-V, e M= )2 L. (3.49)

When the ion velocity is sufficiently less then electron velocity spread V << A the friction force
can be expressed as [5]:

2 4
R=-2(2n st oy, (3.50)
ma,
2 4 A
P~ 2 2 L Doy (3.51)
1 A3 1
ma, 1

In the general case the friction force components can be calculated numerically as the following 1-
dimensional integrals (see Eqg. (3.45)):

2nZ%e*n, 3Vf(V“ —Ve) Vi—v.
E.v)=- <l L 2 v, . 3.52
s, I{ S Y O i N bkt G52
2 2
FJ_ (VL’Kl):_ZTEZZeA'neLM J‘VL (VL _2(V|| —Ve) )f(ve )dve’ (353)

R

Note, that Eq. (3.45) was derived using the approach of dielectric linear plasma response. The
resulting non-logarithmic term in Eq. (3.45) and (3.52) is due to collective plasma waves. It should
be taken into account only at large ion velocity V >> A. In the region of small ion velocity the
longitudinal component of the friction force is

2nZze4n€LMJ- 3Vf(VH —Ve)
m (Vf +(V|| Ve )2 )5/2

General problem in numerical integration of (3.52, 3.53, 3.54) is singularity of the integrants at
Vi, V| ->0. In the integral (3.54) V. can be moved out from the integration

¥ -v.) ( v’ J
512 EXP| — 5 v, (3.55)
I(Vf +(V|| _"e)z) 2N

R 1)=- 70, )dv,. (3.54)

but one gets singularity at VV, = 0. However, the friction force at zero ion transverse velocity has a
finite value given by the formula:
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4nZ’%e*n L V2
F(0,V )=—-y "5~ ZeM gypl — I 3.56
||( n) 1, /727_CA3” p( ZATJ (3.56)

To avoid numerical difficulties the integrals (3.52, 3.54) can be replaced by their asymptotes (3.50,
3.51) at the ion velocity region V << A; and integral (3.54) can be replaced by its accurate value
(3.56) at V<< A||.

One can avoid numerical problems in integration of (3.52, 3.54) at small ion velocity and provide
calculations without usage of analytic asymptotes using algorithm proposed by D. Pestrikov [6].
The integral (3.55) can be rewritten in the following form:

2 4 2
FH(VL,K‘)= _2nZ%e'n,L, J- Ve _ df("e)dve’ (3.57)
2 2 dv
R R
2nZ264neLM V, (Vll _Ve) df(Ve)
FL(VL’I/II):_ . nTTE dv,. (3.58)
m (VL +(V|| _Ve) ) v,
. .. v, VH VL i i i
Using (3.56) and substltutlonszA , yzx, z=-= one can write these integrals in the
I I I
following form:
2 4 © 2 2
g __2nZ% nef’M I z°x - exp[—x]dx, (3.59)
m\/ﬂA” —oo(Zz +(y—x) ) 2

2nZ%e*n L, 7 zyx ( xzj
F =- e M exp| —— |dx, (3.60)
L m /ZnAi —oc(ZZ+(y_x)2)3/2 2

Changing the integration variable by x = y+\z\ tana one can reduce these integrals to the form with
nonsingular integrant:

2nZe'n,L,, "¢ : (y + |z tan oc)2
F = _mﬁnAﬁM_;[[,gy coso +/z/sin a)exp[ ) do. (3.61)
2 4 nl2 2
F, = —sgn(z)znze—neZLM Itan a(ycosa +|z[sina)exp —M do. . (3.62)
m 271:A” o 2

Integral (3.61) at z = 0 can be calculated analytically [6] and gives the formula (3.56).

3.2.2. Friction force at small impact parameters

When the impact parameter is less than the radius of the electron Larmor rotation p < p, the
influence of the magnetic field can be neglected and the friction force can be calculated in
accordance with:

4nn e'Z? V-v
F= =T [t No) T ), (363)
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The range of impact parameters from pmin to p, in (3.63) is divided by two regions: the region
where

Pmin < P < pr

corresponds to so called “fast collisions” and in the region of

Pr <p<pL

the ion can collide with the same electron a few times during its movement through the cooling
section. The last region corresponds to so called *adiabatic” or “cycling” collisions. The
intermediate impact parameter p can be estimated as the following:

Vi A Vi A
Py = L=p, L (3.64)
(OF A

and corresponding Coulomb logarithms are:

L, =Pt L, =P (3.65)
pF pmin

The number of multiple adiabatic collisions of the ion with the same electron is [4]:

AL

N, z2l+ ———. (3.66)
2 2
TV + A
The minimum impact parameter is calculated as usual:
Ze? 1
Prin = - 7 (3.67)
m |7 —v,
3.2.3. Asymptotic representation [4]
Summarizing asymptotic presentations for all types of collisions one can write [4]:
1 vi-any
v—3[2LF +TLM {1}
27Z%e*n, 2 VE-2V} L
F, ~ B E(LF +N_ L, )+TV—A§, {Ir} (3.68)
2 L,
_3(LF + NCOILA)+F’ {]II}
1 Il
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1 3y
—3(2LF +V—;LM + 2} {I}

\%

27Z%e n, 2 32 1
Fi~- v1—— (L, +N601LA)+[V—;LM +2 F,{]Ia} (3.69)

L7

2 L
E(LF +N,,L,)+ A—"g, {11,111}

LI I

lon velocity domains /7, I = 11, +11,, and III are shown in Fig. 3.3.
In these formulae the Coulomb logarithms are defined as follows:

k
L, =2 L —in*Pe [ P (3.70)

kpi pF pmin

Note that if argument of the logarithm is less than 1, then the logarithm value has to be set to zero.
It means that the corresponding type of collisions is absent at given parameters. The minimum
impact parameter is given by the formula

Ze? 1
Puin = ———5—5» (3.71)
m V2+Af,

e

and dynamic shielding radius in the formula (3.12) for the maximum impact parameter is
determined by the electron longitudinal velocity spread:

VA
N T (3.72)

/0 sh —

\VJ_

ur |/

1,
"

Fig.3.3. Domains in the velocity space for the friction force calculation. ¥, V} are the ion velocity
components in PRF; A, is the transverse electron velocity spread, A is the longitudinal one.

Coefficient k£ in the formulae (3.70) was introduced to smooth the friction force shape. In the
original paper it was chosen to be 2, in the program now it is used as an additional input parameter.

Part 1. Electron cooling 24



BETACOOL Physics guide, Version 1.1 http://lepta.jinr.ru/betacool.htm Last update: 20 Nov 2006

3.2.4. Formula by Erlangen University

The BETACOOL code also includes the friction force formula calculated by C. Toepffer (Erlangen
Univ.) in the framework of binary collision model [13]. The unperturbed motion of electron is a
helix with the Larmor radius:

cmy |

=L 3.73
P B ( )

and the pitch determined by longitudinal velocity. The ion velocity variation is calculated iteratively
and at impact parameters larger than the Larmor radius one can obtain solution in a closed form for
two limiting cases:

cm Vf+(V|| _Vu)2
5 = >> ,OJ_
eB

and o<< p,, where ¢is the pitch of the helix as seen from the ion.

Correspondingly, the friction force includes three components related to different types of collision:
- fast collisions at impact parameters less than radius of electron rotation
- collisions with “tight” helices,
- collisions with “stretched” helices.

In the case of axial symmetry the electron distribution function is described by (3.16). For the fast
collisions the formula is analogous to the non-magnetized collisions. The components of the friction
force for fast collisions can be calculated in cylindrical coordinate system by Formulae (3.21).
However, here both impact parameters — minimum and maximum — are now the functions of the
electron velocity:

Ze* 1
Pmin = —— (3.74)
m, (VII _"||)2 +(V, —-v, COS(p)2 +v2sin® g
cmy
Pruax = P1L = eBL .
The friction force in collisions with tight helices [13]:
4nz’e 1 Vi (Vn Vn) i
FVih)= expl —— | X
”’(L ”) m N 2zA I( ( vu)z)S/Z 24]
[ P
I max(p, dv dv, 3.75
J; [max (p,.0 ] ( ﬁjm v, dv (3.75)
4nz’e ! ( Vn ) v
FLVih)= exp| — | x
A e L
X T'” P exp) - ") v dv dv,, (3.76)
0 maX(IOL,é‘) ZAZJ_
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where

P Ve +(V|| Y i | (3.77)

eB

For stretched helices [13]:

A 1 iV v
£y (Van)— m N 27A, .[ ( ( Ly )2 )3/2 exp[ 5 ATJ
| |n(”"”(5pmaXJ ( Jvldvldv“ , (3.78)
0 min pj_’pmax
4n7% v, 1 v
F VW)= 32 OXP| =%
| ( ”) " A2 I( (Vn i )2) ( ZAJ
Tln[ MIN, Prnac) J [ Jvldvldv” (3.79)
0 min pL!pmax

When V >> A, the electron distribution can be approximated by delta-function f(v,)= 8(v, ). In this

case integration over electron velocity components can be provided independently. The friction
force components for tight helices can be expressed in the following form:

4nZ%e*n, V}

B=Nh— 5 pzlu (3.80)
4nz%e*n L, VI-V]
o=l e le . (3.81)

Here, the Coulomb logarithm is determined by the expression

_ 1% Prvs J [ v? J [pmax]
L= —[In| —Lma_|exp v dv. ~In ,
Y Ai! (maX(piﬁ) 28 ) Upy)

em [VE+ V2
at é‘:;”

eB
with the one derived in the limit of an infinite magnetic field using binary collision approach by V.
Parkhomchuk [14]. Note, that apart from the non-logarithmic term, which comes from collective
plasma response and thus is absent in the binary collision approach, Eq. (3.80)-(3.81) are similar to
Egs. (3.48)-(3.49) obtained via dielectric plasma approach [5]. The remaining difference is
attributed to different cutoff parameters being used in two different approaches [16].

. Within an accuracy of definition of the logarithm these formulae coincide

In the same approximation V' >> A the formulae for collisions with stretched helices can be
rewritten in the form:

4nZ%e'n 1 P (a) j
FaV ‘ In| Prex |4 n| 2|, (3.82)
m (V2 +Af|)3/2( {<PL>j @,
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. . . . V .
where @,, wp are the plasma and cyclotron frequencies. This formula is valid at — >>1 and its
1

structure is similar to semi-empirical formula by Parkhomchuk [7].
3.2.5. Semi-empirical formula by Parkhomchuk

A semi-empirical formula for calculation of the friction force in magnetized electron beam can be
written as [7]:

_47%"*n L 1
S TV
eeff

(3.83)

where A,y is the effective electron velocity spread with taking into account variations of the
magnetic field line displacement (“oscillation”) in the transverse direction. The Coulomb logarithm
is given by the expression:

LP — In(pmax +pmin +pJ_J. (384)
pmin +pj_

Here the minimum impact parameter is calculated in accordance with

Ze? 1
min = 3.85
P mVi+A (3.85)
Maximum impact parameter in accordance with original formula is calculated as:
N — (3.86)
U7 p + @,

where 7, IS the ion time of flight the cooling section (3.15), @, is the plasma frequency (3.10).
This formula presumes that

Ay <<AL.

Recently, the accuracy of available analytic representations of the magnetized friction force was
explored in detail via direct numerical simulations. The results and conclusions about available
formulas are summarized in Ref. [8].

3.3. 3-D non-magnetized force and arbitrary distribution
3.3.1. 3-D force

In addition to analytic formulae for the non-magnetized and magnetized friction force which can be
used in BETACCOL (described in Sections 3.1-3.2), a numerical algorithm was recently
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implemented in BETACOOL which allows to calculated friction force for an arbitrary distribution
of electrons, represented by an array of particles.

In the absence of longitudinal magnetic field in the cooling section the electron motion in transverse
planes is uncoupled. Correspondingly, the electron bunch can have different velocity spreads in
horizontal and vertical planes. In this case the friction force can not be presented as a sum of radial
and longitudinal components, but it is a vector with all three different components. The components
of 3D friction force can be calculated as an integral over electron velocity for a given distribution
function. In the case of Gaussian electron bunch the distribution function in velocity can be

approximated as
2 v% 2
exp(— oW J (3.87)

=)

2r) A A, 2N 2N 24

where A,,, are the electron velocity spreads in horizontal, vertical and longitudinal planes.

The friction force is calculated in accordance with the definition:

2
2 Z%'n, T%F (V_v)eXp[_ e 222 ) 212J
F= \fmA eAnLA I I J'"{pmax ] (( : : ” 57 Av.dv,dv, (3.88)

. 2 2 2
= Pmin V”—v”) +(Vx—vx) +(Vy—vy))
where minimum impact parameter is a function of the electron velocity v :

% 1

Pmin = _ 2 (389)

m 7 -y

The maximum impact parameter is calculated as usual:
Py =Min{p,,, V7!, (3.90)

- . A
where the shielding radius is equal to p, =—%, when V' <A, and p,, =L, when V' > A, . Here
(4 @

Ae is the total electron velocity spread:

A, = A +N +A (3.92)

and the plasma frequency is described by Formula (3.10):

2
o - 47m e . (3.92)
m

In the case when undulator option is enabled the minimum impact parameter is calculated as:

2
Pmin = max(pmin ' aBjVJ , (393)
4r° pc
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where B is the undulator field, A - its wavelength.

The 3D model of the friction force implemented in BETACOOL can be used correctly only in the
case when electron beam is represented as an array of particles.

3.3.2. Electron beam as an array of particles

For the friction force calculation the program uses local parameters of the electron bunch calculated
as functions of the ion co-ordinates. In the electron array the program finds N, electrons having
minimum distance to the ion position. The value of N, is input in the edit window “Number of
nearest particles”. For obtained array of N, electrons the program calculates mean and root mean
square parameters for all the coordinates and velocity components.

The density and the velocity spreads evaluated for the local array can be used for the friction force
calculation in accordance with the analytical formulae or asymptotic representation of the friction
force. Usage of approximate formulae sufficiently speeds up the simulations but does not take into
account asymmetry of the distribution function in the transverse plane. If the asymmetry is
significant one can use formulae for 3D friction force. The corresponding electron rms velocity
spreads are calculated as:

A, =cPyro.,, (3.94)
where o, . are the rms angular spreads of the local electrons.

Another possibility is to calculate the friction force using velocity components of the local electrons
directly. For this purpose, the velocities of the local electrons are recalculated into the Particle Rest
Frame. The distribution function of the local electrons in the velocity space is given as a series of o
- functions:

f(V)=]\th5(V—vj)- (3.95)

Also, in the friction force expression, the integral over the distribution function is transformed into
series. In this case the friction force components are calculated as follows:

L _AmZ 1 Ve =viu)le, (3.96)
- m Nloc = (\/(VA “Vix )2 + (Vy Vi )2 + (Vz Vi )2 )3

where V, are the components of ion velocity in the particle rest frame, v;, — the velocity
components of j-th electron (o = X, y, z). The minimum impact parameter in the Coulomb logarithm
Lc; is calculated via velocity of j-th electron:

pmin,j = (397)

There is a possibility to compare the cooling process dynamics for real (6-D) and Gaussian
distribution of the electrons. BETACOOL generates an array with Gaussian distribution in all
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degrees of freedom, when the radio button “From file — Gaussian™ is in the position “Gaussian” in
the visual form. In this case, the rms values of electron co-ordinates and momentum components
from the corresponding edit windows of the visual form are used as input parameters, as well as the
number of particles in array, which determines dimension of the created array.

3.4. Probability of the particle loss

Probability in PRF of the electron capture by the ion during its passage in the cooling section is
expressed by the following formula:

d}DIOSS — roe , (3.98)
dt Y

where n, is the local electron density in LRF. Under assumption that ion velocity in PRF is
substantially less than the one of the electrons and for the flattened electron velocity distribution,
the recombination coefficient o is [9, 12]:

1/3 3
o =A-7° 1["{“'322 J+o.14@2j ] A=302.10 " (3.99)

In the case when the electron velocity spread depends on position inside the electron beam (for
example, if space-charge effects in the electron beam are essential, or, when one uses results of the
electron dynamics simulation performed using external program), the recombination coefficient as
well as the local electron density is a function of the ion coordinates. Correspondingly, the particle
loss probability after crossing the cooling section is calculated by numerical integration along the
ion trajectory. This integration is performed together with solution of the ion motion equation in the
cooling section, which is provided by a model of the electron beam. The algorithm is described in
more details in the next sections.

3.4.1. Simulation of ion-electron recombination in the presence of undulator field

Electron cooling at RHIC [15] using non-magnetized electron beam sufficiently simplifies the
cooler design. Generation and acceleration of the electron bunch without longitudinal magnetic
field permits to reach low value of emittance in the cooling section. General problem of such a
scheme is high recombination rate at low electron temperature. Suppression of the ion
recombination with electrons in the cooling section using helical undulator field was proposed for
RHIC in [11]. In the presence of the undulator field, trajectories of all electrons have the same
coherent azimuth angle &, determined by the undulator period A and field value B at the axis:

0 eBA |
21pc

(3.100)

where p is the electron momentum. Since the recombination cross section is approximately
inversely proportional to the electron energy in PRF, the ion beam life time can be sufficiently
improved.

One can expect that at impact parameters significantly larger than electron rotation radius in helical
undulator
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04 _ BN

== 3.101
27 4n®pc ( )

o

kinematics of a binary collision will be similar to Rutherford scattering of a free electron. Thus the
minimum impact parameter p,,;, in presence of the undulator field has to be replaced by r, value. At
larger impact parameters the friction force can be calculated without taking into account coherent
electron velocity.

The recombination coefficient is determined via recombination cross section ¢ as
a = j WV, =v, oV, =v,)f(v, ), (3.102)

And has to be calculated taking into account the coherent transverse electron velocity. For the
recombination rate calculation one can use the distribution function

m

27

3/2
1 2 2
f(V)d3V — ( J T T e—m(vi+vm,d) 12T, —mvy 12Ty 27Tvldvldvn, (3103)
L 1

where v, is the electron azimuth velocity due to rotation in the undulator field:
vund = Cﬂ}/H ' (3104)

The ion beam life time due to recombination in the cooling section is calculated via recombination
coefficient «, by the following formula:

LN _ e b (3.105)
N dt ye© C

here C is the ring circumference. Under assumption that ion velocity in PRF is substantially less
than electron one the «;, is calculated in PRF by averaging of the recombination cross section over
electron distribution function:

a, = <v0'(v)> (3.106)
where v is the velocity of electrons.

The recombination cross section can be calculated with good accuracy using the following formula

[9, 12]:
h h EN"
o=d o ln ™o 10140240528 & | |, (3.107)
E E hv,
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where A =232 he? I(m®c?) = 2.11x10% cm?, hv, =13.6- 22 €V is the ion ground state binding
2
energy. The electron kinetic energy E = meTv In presence of the undulator field it has to be

calculated as:
E = % ((VJ_ + vund )2 + v||2 )’ (3108)

The formula for flattened distribution can be rewritten in the form adopted for numerical
integration:

o i 37, 3j§| () \/(V = )2 2 exp(— (v LT Vo )2 B V||2 } dv.dv (3.109)
.= 1 und Il . ” B l
wid ) 2N 2N

The normalization factor is calculated as:

Tl )
Int = exp| —~—+=—md/__ Ldvdv, (3.110)
> on, 2N% 24

To avoid overflow in calculation of the exponents, at v,,,; > 6-A, the recombination coefficient is
calculated directly from the coherent velocity:

a’r = vundc(vund ) ! (3111)
that corresponds to electron distribution in the form of delta function.

In the absence of the undulator field the recombination coefficient o for flattened electron velocity
distribution is calculated using formula (3.102).
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4. Map of the cooling section

The map of the cooler provides transformation of the ion co-ordinates from the entrance to the end
of the cooling section. This transformation is based on the solution of the ion motion equation in the
cooling section. The ion motion inside a storage ring is described in the canonically conjugated
variables:

X ={x, 6, z, 0., s-s, 6}, (4.1)

} =A}f, P=pyMc is the
longitudinal component of the reference particle momentum, P, . are the transverse components of

the ion momentum, AP is the longitudinal momentum deviation, s - so is the ion longitudinal

distance from the bunch center (the reference particle), B = Vi/c, y =+/1- 2, c is the speed of
light, 7, — velocity of the reference particle.

. - - sz
where x, z are the horizontal and vertical co-ordinates, 6, . = P‘ , 0

Under assumption, that transverse components of the particle momentum are substantially less than
longitudinal one, the ion motion equations can be presented in the following form:

@y
ds
do F

ds B Mc® By
s
do. F (4.2)

ds :Mcz,b’zy
d(s—s,) _ o

N

ds y?
do, F

s

ds =Mczﬂ27

where F, . ; are the force components in the laboratory reference frame.

The force acting on the ion inside the cooling section is the sum of Lorenz force from solenoid
magnetic field, the electron beam space charge force, the friction force and the force randomly
distributed around zero value, which determines the diffusion in the electron beam. The influence of
the electron beam space charge and longitudinal magnetic field on the ion motion can be described
in a standard way and here we will discuss only calculation of the friction force.

The friction force components are calculated in PRF using the standard list of parameters. Model of
electron beam has to transform the ion velocity components to PRF and calculate all the parameters
required for the friction force calculation. After calculation of the friction force in PRF the electron
beam model calculates the force components in LRF that can be used in the right hand side of the
system (4.2).

In presence of transverse components of the guiding magnetic field at the axis of the cooler solenoid

the electron beam is characterized by co-ordinates of its center and angle between electron beam
axis and ion equilibrium orbit. In this case the ion transverse angles in the frame referenced to the
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electron beam orbit have to be corrected by the values of the angular misalignment 66 between
electron and ion beams:

0, =0,-50,(s),a=x,z (4.3)

where &' is the ion angle in the electron beam reference frame.

The space charge of the electron beam determines the electron average velocity and electron
velocity spread as functions of co-ordinates inside the electron beam. Electron beam density in a
general case is also a function of co-ordinates. To calculate the ion position inside the electron beam
one needs to introduce transverse co-ordinates of the electron bunch center (x., z.) and distance
between the centers of the electron and ion bunches s.. Under assumption that 66 /p,,., << a the ion
co-ordinates inside the electron beam are:

X =X+Xez =2+20 (5-50) = (s - 59) + e (4.4)

The transformation of the ion co-ordinates in accordance with the magnetic field line curvature,
choice of the numerical algorithm for integration of the system (4.2) and calculation of the particle
loss probability are provided by the model of the cooler. The particle loss probability is calculated
by integration of expression (3.39):

on
e g5 45
v?Be (#3)

[} cool
P = |
0

which is performed along the particle trajectory during numerical integration of the ion motion
equations.

The model of the cooler is realized as a procedure which obtains at the entrance the 6D vector of
initial particle co-ordinates, transforms components of this vector in accordance with solution of the
system (4.2) and returns the value of the ion loss probability.

All stages of the algorithm are presented in the Fig. 4.1.
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Euler ....

v
Final particle co-ordinates and velocities

Fig. 4.1. Block scheme of the particle propagation through the cooling section.

4.1. Models of electron beam

The model of electron beam calculates list of parameters required for friction force procedure,
transforms the ion velocity from LRF to PRF, makes a choice of the friction force procedure from
library and transforms the force components from PRF to LRF. These parameters depend on the
electron beam model:

the local density of electrons,

the electron velocity spread in transverse plane,

the electron longitudinal velocity spread.
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The local electron beam density is determined by geometry of the electron beam. The local velocity
spread is the function of co-ordinates inside the electron beam if the space charge effects are taken
into account. The space charge effects can also lead to shift of the electron mean velocity. The last
effect does not change the beam velocity spread and it is taken into account by required correction
of the longitudinal component of the ion velocity.

In the present version of the program various models of the electron beam are realized:

1. Uniform round cylinder,

2. Gaussian bunch of round (or elliptical) cross-section,

3. Uniform bunch,

4. Cylinder with round (or elliptical) cross-section with Gaussian distribution in transverse plane.
5. Hollow beam

6. Electron Array

The first model corresponds to electron beam of usual electron cooling system. For this model the
input parameters are electron beam current and radius and electron beam density is assumed to be
independent on the ion co-ordinates inside the electron beam. The local electron beam density in
LRF is constant determined by the expression:

n, =1, /(ena’pc) (4.6)

For this model the space charge effects in the electron beam are taken into account as described in
the Chapter 4.2.

Input parameters for the Gaussian bunch model are the following:
- r.m.s. bunch dimensions,

- offset between electron and ion bunch centres,

- number of electrons in the bunch N..

For this model the local electron density in PRF in the point (x, z, s - so) is calculated as follows:

n - N, exp[_ x? z? _(S—SO)ZJ, 4.7)

" (2n)"%6.0.0,y 262 B 26° 26?

N

where o, o, are r.m.s. transverse bunch dimensions, s - so is calculated taking into account offset
between electron and ion bunch centers.

As an output parameter the program calculates electron peak current as:

eN Bc

1
G,/2n

I =

e

(4.8)

where o, is r.m.s. bunch length.

The Uniform bunch model presumes that the electron bunch has a uniform density in transverse
direction and Gaussian distribution along longitudinal co-ordinate. Correspondingly the input
parameters for are the following:

- the bunch transverse dimensions,

- the rms bunch length,

Part Il. Electron cooling 36



BETACOOL Physics guide, Version 1.1 http://lepta.jinr.ru/betacool.htm Last update: 20 Nov 2006

- offset between electron and ion bunch centres,
- number of electrons in the bunch N..

For this model the local electron density in PRF in the point (s - so) is determined as follows:

n, = N, exp(— MJ : (4.9

(27[)1/2 m .a.o.y 20

N

where a, a. are the transverse bunch dimensions, s - so is calculated taking into account offset
between electron and ion bunch centers.

As an output parameter the program calculates electron peak current in accordance with the formula
(4.8).

The model of Gaussian cylinder can be used for cooling time calculation in the case when short
electron bunch moves forward and back along a long ion bunch during the time shorter than cooling
time. This model is more realistic in the case of electron cooling with magnetized circulating
electron beam. The model input parameters are:

- r.m.s. dimensions of the cylinder cross-section,

- number of electrons per unit of length ..

Local electron beam density in PRF in a position (x, z) is calculated in accordance with:

2 2
noo e exp(— X ZZJ . (4.10)

- 2nG Gy
Electron beam current for this model is given by the formula:
I, =ek PBc. (4.11)
The last two models of the electron beam do not take into account the space charge effects in the
electron beam. However, the expressions for the self-fields of the electron beam are introduced into
the program as described in the next chapter and can be introduced into calculation if necessary.
The model Electron Array is the most recent and general model of electron beam representation. In
this model the 6-D distribution of electron beam is generated by some other code. This distribution

can be read into the BETACOOL. In this case, the friction force can be calculated for an arbitrary
distribution of electrons.

4.2. Model of the cooler
The model of electron cooler provides a choice of the numerical integration for the system (4.2) and
takes into account displacements of the electron beam position in the cooling section. The system

can be solved by assuming two different models of the cooler:

1. Electron cooler as a thin lens,
2. Electron cooler as a system of non-zero length.
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In the case, when the friction force variation along the cooling section is negligible and relative
change of the particle momentum is small, the electron cooling section can be treated as a thin lens.
This model presumes also that the ion transverse co-ordinates do not change during motion inside
the cooler. Thus, the ion angle variation is calculated as following

F

AO=—F>——1 .,
MCZBZ'Y cool

(4.12)

where /., 1S the cooling section length, F is the friction force in LRF. The ion co-ordinates are not
changed inside the cooler.

For the non-zero length of the cooler the ion motion equation can be solved using one of the
numerical methods: Euler or Runge-Kutta. Numerical integration of the ion motion equations is
necessary also in the case, when electron beam trajectory does not coincide with the ion equilibrium
orbit.

One of the options in the program is to introduce the electron beam trajectory position from an
external file. In this file the transverse coordinates of the electron trajectory are specified in a few
points along the cooling section. In this case, the cooling section is divided by a few sub intervals in
longitudinal direction. In each interval the electron trajectory assumed to be a straight line displaced
from the ion trajectory and having some angle with it. Position of the electron beam trajectory is
determined by its transverse co-ordinates at the entrance and at the exit of the sub interval.

The ion transverse co-ordinates relatively to the electron beam trajectory are calculated as functions
of its longitudinal co-ordinate (independent variable in the system 4.2) in accordance with the
angles between electron and ion beam axis:

0 =u19, :L, (4.13)

where x5, xo are initial and final horizontal co-ordinates of the electron beam trajectory in the sub
interval correspondingly, calculated from the ion equilibrium orbit. /g is the length of corresponding
sub interval. The same is for vertical position. The ion velocity components in the frame referenced
to the electron beam trajectory are corrected by these angles. We assume that the angles between
the electron beam trajectory and the ion equilibrium orbit are sufficiently less than unit. In this case
correction of the ion longitudinal velocity is not necessary.

Under assumption that the both angles are sufficiently less than the ion angle the ion co-ordinates in
the sub interval are calculated as:

X=x+x,+0,,.s
z=z+z,+0,,.s
ex = ex + 9e,i,x

0.=0_+0 (4.14)

ei,z?

where co-ordinate s is calculated from the entrance of corresponding sub interval.
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5. Kick of the ion momentum components in the electron cooling section

The Model Beam algorithm presumes that the ion geometrical co-ordinates do not change after
crossing the cooling section and action of the cooling leads to change of the ion momentum
components only (the thin lens approximation). The kick in the ion beam momentum after crossing
the cooler is calculated on the basis of the map of the cooling section. The map transforms the
initial ion co-ordinates in 6D phase space to the final ones:

X,'n :{xina ex,ina Ziny ez,iru (S'SO)in, es,in} -> )?f :{Xf, ex!f, Zf sz, (S-S())f, es,f}, (51)

The Model Beam algorithm ignores the ion geometry co-ordinate variation (x, z, s-s9) and multiplies
the ion momentum components by the factor:

At
B, =0, x eXp((ea,/‘ -0, )T_j (5.2)

rev

where § = x, z, s — sy, At — step over time in the dynamics simulation.

The particle losses after crossing the cooler are calculated separately for total beam and for Model
Beam. In the total beam the ion number is decreased in accordance with:

N =N, x exp[—ﬂﬁj : (5.3)
Ny T

where Py, is the particle loss probability calculated by the map of the cooling section in accordance
with (4.5), Ny is the particle number in the Model Beam. For the particle in the Model Beam the
program generates random number uniformly distributed in the range from 0 to 1, if this number is
smaller than P, for this particle new co-ordinates are generated in accordance with current ion
distribution as it described in the Chapter 2. If the random number is larger than Py, the particle is
alive and its co-ordinates are not changed.

6. Algorithm of the electron cooling time calculation

For rms dynamics simulation one needs to calculate characteristic cooling times and the lifetime
due to recombination in the cooling section. In the present version of the program the cooling times
can be calculated for two models of the ion beam. In the frame of the first model (“single particle”)
the ion beam is presented by an ion having invariants of the motion corresponded to r.m.s. beam
emittances. In this case a change of the ion motion invariants after crossing the cooling section is
averaged over the phases of the ion betatron and synchrotron oscillations in the ring. In the second
model (“Monte-Carlo™) the ion beam is presented as an array of particles. The particle distribution
over co-ordinates is Gaussian at corresponding r.m.s. parameters and matched with the lattice
parameters of the ring in the cooling section. The beam is propagated through the cooling section
particle by particle and r.m.s. parameters of the particle distribution function at the exit of the cooler
are used for the cooling time calculation.
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6.1. Calculation of the characteristic times of the ion motion invariants

The ion co-ordinates at the entrance of the cooling section can be expressed as functions of the
motion invariants and phases of the betatron and synchrotron oscillations. The ion “betatron”
coordinates and momentum inside the cooling section can be calculated in accordance with

xy =-/IB,sing, x;= éX(COSqH-OLxSin ). (6.1)

where ¢ - is the phase of the horizontal betatron oscillation, «, and g, are alpha and beta functions
at the entrance of the cooling section. The same expressions are used for z co-ordinate with
substitution of corresponding alpha and beta function values, where we introduced the notation

X' =P Forrms. particle the mean square of the co-ordinates have to be equal corresponding

P
standard deviations:

o, =8B, o= E ., (6.2)

. . L 1+a?
where &, is r.m.s. emittance and gamma function is calculated as usual vy, = :

. To satisfy this

X

equation the invariant of the motion Z is to be equal to two sigma emittance 7, = 2e,.

Longitudinal emittance of the ion beam is determined in the program as a mean square of the
particle momentum deviation:

e = (5%). (63)

Here to simplify the notation the ion relative longitudinal momentum deviation is denoted as

A . S .
5= In the case of coasting beam the cooling time is calculated by averaging over two values of
p

the momentum deviation:

d=1tg . (6.4)

For the bunched ion beam one can express the particle momentum deviation and its longitudinal co-
ordinate (distance from the bunch center) as a function of the phase of synchrotron oscillations:

8=.[I,cosy, s—s, =P,.[1,siny, (6.5)
here the "synchrotron function” is determined as:

m
A 6.6
"o e

where R is the mean ring radius, n - off momentum factor, Q; is the synchrotron tune. The standard
deviations for longitudinal degree of freedom are calculated in accordance with the longitudinal
emittance definition:
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Gy =+/& , 0, =P,05 (6.7)

and as in the case of transverse motion to satisfy this equation the invariant of the motion /; is equal
to two sigma emittance /; = 2g;.

The total values of the ion x-co-ordinates are equal to:
x=x,+D.3, x':xé+D46, (6.8)

where D and D' are dispersion and its derivative in the cooling section. For the vertical plane all the
procedures are provided by the same way.

Using these formulae at given values of the phases of betatron and synchrotron oscillations one can
calculate particle co-ordinates and velocity components at the entrance of the cooling section. The
map of the electron cooling section transforms the ion coordinates to the exit of the cooler and
returns the probability of the ion loss. New values of the particle motion invariants are calculated in
accordance with the following formulae. Invariant of the particle longitudinal motion for a coasting
beam is calculated simply as a square of the relative momentum deviation, for a bunched beam

s [((s=s9)Y
1 =| 8%+ =200 | |, 6.9
[ . j} 69

The Courant — Snider invariants of the particle betatron motion are calculated from the "betatron™
particle co-ordinates:

xp =x-D.3, xé =x'-D'5. (6.10)

The invariant calculated in accordance with
I = (Bxxéz + 20Lxxﬁxf3 + yxxg) (6.11)

corresponds to 2-sigma emittance of the beam. The invariant of vertical motion is calculated with
substitution z instead x.

When the electron cooler is treated as a thin lens, the lattice parameters at the exit of the cooler
coincide with that ones at the entrance. For the cooler model taking into account finite length of the
cooling section the tracking of the lattice parameters through the cooler is necessary. Neglecting the
influence of the cooler magnetic field on the ion motion the lattice parameters at the exit of the
cooling section are calculated as:

Bf,x = Bx - Zaxlcool +’Yxlc2001’ a“f,x = a“x _’Yxlcool ' (612)
The characteristic time of change of the rms particle invariant is calculated in accordance with:
ol
11 (6.13)
T 1T

cool rev

where T, is the particle revolution period in the storage ring, the brackets mean averaging over the
phases of betatron and synchrotron oscillations:
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27
(87)= 81n3,[ [[81(7.0..9.0, ). do.do,. (6.14)
0

The formula (6.13) gives the cooling time for single particle, which invariants of the motion
correspond to the beam r.m.s. emittances.

The ion beam life time is calculated by averaging over the phases the ion loss probability:

P
1) , (6.15)
Tlife Y;EV
where the averaging is performed by the same way as for invariants:
1 2n =
<Pm>=@uf1’,m (7.0..0.0. Ho,do.do, . (6.16)

6.2. Calculation of the characteristic times of emittance variation using Monte
Carlo method

Calculation of the characteristic times of the beam emittance variation is performed in the program
using Monte Carlo method, which includes the following steps.

1. Generation of the beam as an array of the particles matched with the optics structure of the ring at
the entrance of the cooler.
2. Propagation of the beam through the cooler particle by particle using the map of the cooling
section.
3. Calculation of the new values of the beam emittances after crossing the cooler.
4. Calculation of the cooling time in accordance with the formula:
1 _14e . (6.17)
T el

cool rev

The beam generation is performed as described in the Chapter 2. For the beam emittance calculation
one can use one of the procedures described in the Chapter 2. The result of the calculation can
slightly depends on the procedure used for the emittance calculation. This fact can be illustrated on
example of simplest model of the cooler. One can treat the cooling section as a thin lens — in this
case the particle co-ordinates keep their initial values and components of momentum are changed in
accordance with the friction force value. Therefore the beam Twiss parameters are changed in the
same time when the lattice parameters are constant due to zero length of the cooler according to this
model. This leads to the mismatch of the beam with the ring optics structure and, as a result, to an
additional emittance growth if the emittance is calculated through rms co-ordinates of the beam.

When the electron cooler is treated as a system of non-zero length the program provides tracking of
the lattice parameters through the cooling section as in the case of single particle cooling time
calculation.

The ion beam lifetime is calculated with the same formula as in this case of single particle model:

Halp. , (6.18)
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however, here, the averaging of the loss probability is provided over the particles.
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Part I11. Intrabeam scattering

1. Introduction

Intrabeam scattering (IBS) in the ion beam causes two processes: relaxation of the beam to a
thermal equilibrium between degrees of freedom and diffusion growth of 6D phase volume of the
beam due to variation of lattice parameters along ring circumference.

For Gaussian distribution of ions over velocity, four models for IBS calculation are realized within
the BETACOOL.: — Piwinski [1], Martini (extended Piwinski) [2], Bjorken-Mtingwa [3] and Jie
Wei [4] models. The Martini model does not require additional assumptions for calculation of the
beam emittance growth times. Piwinski’s model can be deduced from Martini’s model neglecting a
variation of dispersion and beta function along the ring o